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Abstract 

Accurate disturbance models  are  necessary to predict 
the effects of vibrations  on the performance  of  precision 
space-based  telescopes,  such as  the Space  Interferome- 
try Mission  (SIM). There are many  possible disturbance 
sources  on  such a spacecraft, but the reaction  wheel as- 
sembly  (RWA)  is anticipated to be the largest. The fol- 
lowing paper presents  two types of reaction  wheel  dis- 
turbance models.  A steady-state empirical  model  which 
assumes the disturbances  consist of discrete  harmonics of 
the wheel  speed, and a non-linear  analytical  model  which 
is  developed  using  energy  methods to capture the inter- 
nal flexibilities and fundamental harmonic of an unbal- 
anced  wheel.  Experimental data obtained  from Ithaco B 
and E type wheels  is  used to determine the model  param- 
eters for both types of  models and a comparison  between 
the models and data is  presented. The analytical model 
is  currently a work in progress, but preliminary  results 
indicate that an accurate disturbance model can  be con- 
structed by  combining features of both the empirical and 
analytical  modeling  techniques. 

Introduction 

Next  generation precision space-based  telescopes, 
such as the  Space  Interferometry  Mission  (SIM), re- 
quire  high levels of pointing  stability.  Small lev- 
els of vibration  can  introduce  jitter  in  the  opti- 
cal train  and  cause  a significant reduction  in im- 
age quality. Vibrations  may  be  induced  by  me- 
chanical  systems  and  sensors  located  on  the space- 
craft, such as cryo-coolers, optical  delay  lines,  and 
other  optical  elements.  The largest anticipated dis- 
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turbance  source  on  SIM is the reaction wheel as- 
sembly  (RWA).  Therefore, accurate models of re- 
action wheel disturbances  are necessary to predict 
their effect on  the  spacecraft  performance  and de- 
velop methods  to  control  the  undesired  vibration. 

Reaction wheels are  momentum  exchange devices 
which are  often used for spacecraft attitude control 
and for performing  large  angle  slewing  maneuvers. 
A  typical  reaction  wheel  assembly  consists of a ro- 
tating flywheel suspended  on  ball  bearings  encased 
in a housing and  driven by an  internal brushless 
DC  motor.' As the wheel spins,  disturbances  can 
occur  from  four  main sources: flywheel  imbalance, 
bearing  disturbances,  motor  disturbances  and mo- 
tor  driven  errors.2 Flywheel  imbalance is generally 
the  largest  disturbance  source in the reaction  wheel 
and  can  cause  both  a  disturbance force and  torque at  
the frequency at which the wheel is spinning.  This 
disturbance will be referred to  as  the  fundamental 
harmonic  throughout  the  remainder of the  paper. 
Bearing  disturbances, which are  caused by irregular- 
ities in the balls,  races,  and/or  cage,  produce high 
frequency disturbances at higher  harmonics of the 
wheel speed.3  Disturbances from these two  sources 
will be the focus of this  paper. 

Two different types of reaction  wheel  models 
will be discussed. The first is an empirical  model 
which  was  developed for the Hubble  Space  Telescope 
(HST) wheels and is mostly  system-ID  based.  Since 
every type of  RWA will produce  slightly different dis- 
turbances, a MATLAB  toolbox  has  been  developed 
which extracts  the  empirical model parameters from 
steady-state  reaction wheel data. However, the  test 
data shows that  the RWA also  includes internal flex- 
ibility which  results in amplification of the harmonic 
disturbances at certain wheel  speeds.  These effects 
are  not  captured by the empirical  model.  There- 
fore a second  model is created which is more  physics 
based. It is an  analytical model  which captures  the 
physical  behavior of an unbalanced  rotating flywheel 
as wheel as well as  the  internal flexibility of the 
wheel. 

The following paper will focus on  these two RWA 
disturbance models. First,  the  empirical model will 
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be  presented  and  the  methods used to  extract  the 
model parameters from steady-state RWA data dis- 
cussed. Data  taken from Ithaco  B  and  E  type wheels 
will be  used to  illustrate  the process. Then,  a prelim- 
inary version of the  analytical model and  the  theory 
used to build it will be  presented. Also, the use of 
experimental data  to determine the  parameters for 
this model will be  discussed as well, using the  Ithaco 
wheel data  as examples. Finally, the empirical  and 
analytical model will be  compared  to  the  experimen- 
tal  data  and  the advantages and disadvantages of 
each will be discussed. Methods of using the empir- 
ical model to improve the  analytical model will be 
explored. 

Experimental Data 

Two  sets of reaction  wheel data will be  used in 
this  paper  to  illustrate  and  validate  the model- 
ing  techniques.  The first set was taken at Or- 
bital's  Germantown, MD facility and is disturbance 
data from Ithaco  B-type  wheels,  model  TW-16B32. 
The wheels tested were off-the-shelf engineering and 
flight unit wheels for the  FUSE mission.  During 
testing,  the wheels  were hard-mounted  to a Kistler 
force/torque  table  and  spun at speeds  ranging  from 
500-3400 rpm  at  intervals of 100 rpm.  Once  the 
wheel 'had achieved steady-state  spin at the de- 
sired  speed disturbance forces and  torques at the 
mounting  interface  between the wheel and  plate were 
measured  with four 3-axis load cells located  in  the 
force/torque  table.  The data was sampled at 1kHz 
for = 8  seconds with  anti-aliasing  filters at 480 Hz. 
The  data was processed  using  MATLAB to  obtain 
the power spectral  densities  (PSDs)  and  amplitude 
spectra of the  time histories of the wheel distur- 
bances at each  speed.  A  PSD is a  measure of the 
power in a signal  as  a  function of frequency. It is 
generally  represented  in  units2/Hz  and the  area un- 
der a PSD is equal to  the variance of the signal. 
An amplitude  spectrum is an  estimate of the signal 
amplitude  as  a  function of frequency. The ampli- 
tude  spectrum of a force disturbance  time  signal  has 
units of N and is plotted  against  frequency.  A  point 
on the curve (f, a m p )  can  be considered a sin wave 
with frequency, f ,  and  amplitude, a m p .  

Frequency  domain data  can  be  plotted side by 
side in  a 3-dimensional plot known as a waterfall 
plot. An example of a waterfall plot is shown in 
Figure 1. The  data shown is the F, disturbance 
data obtained  from  the  B wheel test.  The  data is 
only plotted  up  to 200 Hz because  after  this  point 
the mode of the  test  stand  corrupts  the  disturbance 
data. Note the  diagonal ridges in the  data.  The fre- 
quency of these  disturbances changes  linearly  with 
wheel  speed.  These  disturbances  are the wheel har- 
monics; the  largest is the  fundamental  harmonic. 

The second  set of test  data was taken at the 

RWA Radial Force D~~turbmce PSD Ewheel (x-direction1 

Wheel Speed (RPM) Frequency (Hz) 

Figure 1: Example  Waterfall  Plot 

NASA Goddard  Space  Flight  Center using  a single 
Ithaco  E-type, off-the-shelf, standard  catalog  prod- 
uct  reaction  wheel. The wheel  was integrated  into 
a stiff cylindrical  test  fixture  and  hard-mounted  to 
a 6-axis Kistler  force/torque  table.  In  this  test,  the 
wheel was started at 0 rpm  and full torque  voltage 
was applied to  the  motor  until  the wheel saturated 
around 2400 rpm.  The  data was sampled at 3840 Hz 
for 390 seconds. In  order  to use the  data  to  obtain 
a  steady-state  empirical  model of the form  shown in 
Equation 1, the  data  had  to  be divided  into  time 
slices of 8192 points  each.  Each of these  time slices 
was  considered quasi-steady-state  and used to com- 
pute  the  PSD  and/or  amplitude  spectra.  Then  the 
resulting  frequency domain  data was  used to esti- 
mate  the  average  speed of the wheel during  that  time 
slice.4 When processed in  this  manner,  the E-wheel 
data could  be treated  as  steady-state  data  similar  to 
the B-wheel data. 

The  data from  each test  consists of 6  distur- 
bances:  x-axis force, F,, y-axis force, Fy, z-axis 
force, Fz,  x-axis torque, T,, y-axis torque, Ty and 
z-axis torque, T,. Since the z-axis is the  spin  axis 
of the wheel the F, and Fy data  are  both  the  ra- 
dial force disturbances  and  should  be  nearly  identi- 
cal. Both of these  datasets  are used to  create  the 
radial force disturbance model. Similarly, T, and 
Ty are  both  radial  torque  data  and  should  also  be 
the same.  These  datasets  are used to  create  the 
radial  torque model. The F, data is the axial force 
data  and is used to  create  the  axial force disturbance 
model. The T, data is the  disturbance  torque  about 
the spin  axis.  This  disturbance is very  small and  can 
be neglected. 

The following section will illustrate how the ex- 
perimental data is used to  determine  the model  pa- 
rameters, hi and Ci, for the empirical  model. The 
B wheel data will be used as  an  example. 

EmDirical Model 

Similar to SIM,  HST  had  very fine pointing and me- 
chanical stability  requirements.  Therefore,  charac- 
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terization of  RWA vibrations was important  to  the 
spacecraft  performance,  and a disturbance model 
was  developed  using the results of induced  vibration 
testing  on  the  HST RWA flight units.5 The model as- 
sumes that  the  disturbances consist of discrete  har- 
monics of the reaction  wheel  speed  with  amplitudes 
proportional  to  the  square of the wheel speed: 

n 

m(t) = cif:wu sin(2rhifrwat + 4i )  (1) 
i= 1 

where m(t)  is the  disturbance force or  torque, n is 
the number of harmonics  included  in the model, Ci 
is the  amplitude of the  ith harmonic, f r w ,  is the 
wheel  speed in Hz, hi is the  ith harmonic  num- 
ber  and q5i is a  random  phase  (assumed  to  be uni- 
form  over [ 0 , 2 ~ ] ) . ~  Note that  this model yields dis- 
turbance forces and  torques  as a function of the 
wheel speed.  Transient effects induced  from  chang- 
ing  wheel  speeds are  not included. 

Identifying Harmonic  Numbers 
The first step  in  the  empirical modeling  process is 
to use the experimental data  to determine at which 
ratios of the wheel  frequency disturbances  occur. 
These  values are called the harmonic  numbers,  hi. 
A  MATLAB  function has been created which, given 
steady-state  reaction wheel disturbance  data for one 
direction,  returns a list of harmonic  numbers for that 
wheel. The  function  individually  examines all the 
amplitude  spectra in the  dataset  and  locates spikes 
which are  due  to  the  harmonic  disturbances of the 
wheel. To illustrate  this process we will consider the 
F, disturbance of the B wheel dataset. 

The  B wheel F, dataset consists of 30 time his- 
tories,  one  taken  every 100 rpm from 500-3400 rpm, 
which  were  processed into  amplitude  spectra  and 
PSDs (see Figure 1). The first step  in  extracting 
the harmonic  numbers  from  this data is to frequency 
normalize the  data by dividing the frequency  vector 
by the speed at which the wheel was spinning  when 
the  data was taken.  Figure 2 shows an example at 
3400 rpm.  The  upper plot is the  amplitude spec- 
trum  plotted vs. frequency. The lower plot shows 
the same  frequency data  plotted  against  the normal- 
ized frequency. The x-axis of the lower plot is  now 
non-dimensional.  Note that  the largest  disturbance 
occurs at the  number one. This  peak is caused by 
the  fundamental  harmonic  disturbance. 

Once all the  amplitude  spectra in the  dataset  are 
frequency  normalized  MATLAB  searches for peaks 
in the  data  at each wheel speed. It is important 
to  note  that  not  all  peaks found in the  amplitude 
spectra  are  a  result of harmonic  disturbances. Some 
may  be due  to noise or  side lobes of the  harmon- 
ics resulting  from  performing an FFT on the  time 
history  data.  These noisy spikes are  isolated from 
the  disturbance  harmonics using  a  histogram.  The 

d 
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Figure 2: Peak  Identification in B  Wheel F, Data 
at 3400 rpm 

peaks  are  binned  according to  spike amplitude.  The 
peaks which fall in the largest  bin  with  a  small  am- 
plitude  are considered noise and  discarded.  The re- 
maining spikes are considered possible harmonic dis- 
turbances.  The  result of this process is illustrated 
in  Figure 2. The  stars  indicate which spikes were 
chosen by MATLAB as possible disturbances.  Note 
that  the smaller ‘(noisy’’ spikes are  not  marked.  The 
locations,  or  harmonic  numbers, of the  disturbance 
spikes are placed into  a  matrix. All the  amplitude 
spectra  in  the  dataset  are  searched in this  manner 
until a complete  matrix of spike locations,  with  each 
column  corresponding to a different wheel speed, is 
built. 

A true harmonic  disturbance  should  occur  at  the 
same  harmonic  number  in all wheel  speeds.  There- 
fore, a binning  algorithm is used to search the spike 
locations  matrix for matching  harmonic  numbers 
across  wheel  speeds.  Numbers a t  which spikes occur 
in  more  than a given  percentage of possible wheel 
speeds  are  returned as  the  harmonic  numbers cor- 
responding to  that  dataset.  The  radial force and 
radial  torque model  harmonic  numbers  are  deter- 
mined  by  comparing  and  combining the harmonic 
numbers  extracted from the F, and Fy data  and  the 
T, and Ty data, respectively. The axial force har- 
monic  numbers  are  simply  the  harmonic  numbers 
extracted from the F, data. 

Calculating Amplitude Coefficients 
To  complete the empirical  model the  amplitude co- 
efficients, Ci, must  be  extracted from the  data. A 
MATLAB  function  was  developed to accomplish this 
task using the same  method employed in  the model- 
ing of the  HST  wheel^.^ The  magnitude of the dis- 
turbance force (or  torque) is assumed  to  be  related 
to  the wheel  speed as follows: 

Fi = CiG2 (2) 

where Fi is the  disturbance force resulting  from the 
i th harmonic in N (or Nm for a torque), Ci is the 
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amplitude coefficient of the  ith  harmonic  in  N/rpm2 
(or  Nm/rpm2),  and 0 is the wheel speed in rpm. 

Equation 2 is used to calculate the  amplitude 
coefficients by performing a least  squares fit on the 
experimental  data.  The  error between the experi- 
mental  data  and  the  theory for the  ith harmonic at 
the   j th  wheel speed, eij is: 

e . .  - F. .  - C.02 
13 - 13 1 3 (3) 

where Fij is the  experimental  disturbance force of 
the  ith harmonic in the  dataset  corresponding  to 
the   j th  wheel speed, 0j. Then,  the  square of the 
error  (Equation 3) is summed  over  all  wheel  speeds 
and minimized,  resulting in  the following equation 
for C;: 

The MATLAB  implementation of Equation 4 
uses the  amplitude  spectra of the  time  domain  data 
to find the  actual  disturbance force at each  harmonic 
number  over  all wheel speeds.  For  example,  consider 
the F, dataset of the  B wheel and  the fundamen- 
tal harmonic, hl  = 1.0. The  amplitude coefficient 
for this  harmonic, C1 is determined  by first looping 
through all 30 amplitude  spectra  and  recording  the 
amplitude of the force at  the frequency  correspond- 
ing to  the number 1.0 harmonic at each  wheel  speed. 
Then  the force data  and wheel speeds  are  summed as 
shown in Equation 4 to  calculate  the  amplitude co- 
efficient. A disturbance  at  the  ith  harmonic may not 
be visible in all the  amplitude  spectra  in  a  dataset. 
For  example,  harmonic  disturbances are more diffi- 
cult to identify in  data  taken at low wheel  speeds 
due  to a low signal  to noise ratio.  Therefore, if a 
disturbance spike  could  not  be detected  in  the  data 
at a given wheel  speed,  the force, Fij and  speed, wj 
for that wheel speed were not included in the sum- 
mation of Equation 4. 

The  results of the curve fit for the 1.0  and 3.87 
harmonics of the B wheel data (F, and Fz/)  are 
shown in Figure 3. The circles represent the force 
amplitudes of the experimental data over the differ- 
ent wheel speeds.  Note that some of the circles lie 
on the x-axis. These  points  are from  wheel  speeds 
in which that  particular  harmonic  disturbance was 
not visible in the  data.  The solid line is the curve 
generated  using the calculated Ci and  Equation 2. 
Both  the F, and Fv data were  used to perform the 
curve fit in this  case since both  directions  are  radial 
force data.  Therefore,  a more accurate  radial force 
amplitude coefficient can  be  obtained by  combining 
both  data  sets when  performing the analysis. 

The coefficient curve fit plots are useful for a 
number of reasons.  First,  they show how  well the 
assumption in Equation 2 holds. In  Figure 3(a) the 
data points lay right along the  theoretical  curve. 

Figure 3: Amplitude Coefficient Curve  Fits for B 
Wheel  Radial Force Data: (a) hl = 1.0 (b) hg = 3.87 

This  result  suggests  that  the  assumption of Equa- 
tion 2 is a  good  one for the  fundamental  harmonic. 
Physics will also be used to  support  this claim  when 
the  analytical model is discussed. In  contrast,  the 
curve fit seen  in  Figure  3(b) is not  quite  as  good. 
This plot suggests that  the assumed  force-speed re- 
lationship  may  not hold for the higher  harmonics. 
However, it will provide an  estimate of the ampli- 
tude coefficients for these  harmonics.  The  curve fit 
plots  can  also  be  used to  eliminate  harmonics from 
the model. If the  curve fit is not  based  on  enough 
data  points  there  cannot  be a high  degree of confi- 
dence in  the  resulting  amplitude coefficient. There- 
fore, these  harmonics  should  be  removed  from the 
model due  to a lack of data. 

In  addition,  the effects of the  internal wheel 
modes on  the  harmonic  disturbances  can  be ob- 
served in  the coefficient curve  fits.  Figure 4 shows 
the coefficient curve fit for the second radial force 
harmonic, h2 = 1.99 of the B wheel. The  lighter 
points  and  curve  are  the  initial  results of the  am- 
plitude coefficient calculation.  Note that  the  data 
points show a large  increase  in force amplitude be- 
tween  1300 and 1900 rpm.  This  amplitude  increase 
occurs  when  this  harmonic cross one of the inter- 
nal wheel  modes.  Since  this  interaction  between the 
harmonics  and  the wheel  modes is not included in 
the empirical  model  it  should  not  be  included in 
the calculation of the  amplitude coefficient. There- 
fore, these  points were  removed  from the  summation 
(Equation 4) and  the coefficient  was recalculated. 
The  darker  data  points  and  curve  are  the  results of 
the second  analysis.  Note that removing the  points 
affected by the wheel mode  has decreased the  ampli- 
tude coefficient for this  harmonic.  The  interaction 
between the harmonics  and  the  internal wheel modes 
will be  explored in more  detail when the  analytical 
model is discussed. 

Model Validation:  Comparing to Data 
Comparing the model to  the experimental data is the 
final step in the empirical  modeling process. Plot- 
ting  the  model  against  the  experimental  data allows 
validation and refinement (if necessary) of the  har- 
monic  numbers  and  amplitude coefficients . Figure 5 
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Figure 4: Effects of Internal Wheel  Modes on Am- 
plitude Coefficient Curve Fit: hz = 1.99 (B Wheel 
Radial Force) 

is a waterfall plot of the F, data  PSDs  (continuous 
lines) plotted  with  the  radial force model PSDs (cir- 
cle). The  PSD of the model  was  derived by finding 
the  autocorrelation, & ( T )  of Equation 1 assuming 
that q+i is a  random variable over the interval [OI2.rr] 
and  that q+i and q+j are  statistically  independent: 

i=l .a 

Then,  the one-sided PSD, Sm(w),  is:7 

Note that  the  PSD shown in Equation 6 consists of a 
series of discrete  impulses  occurring at  frequencies, 
frwahi,  with  amplitude, c i $ w a .  The  data  PSDs, 
however, are  continuous over  frequency.  Therefore, 
it is important  to keep in mind that  the model am- 
plitude is actually  the  variance, or the  area  under 
the spike in  the  PSD, of that harmonic  disturbance. 
This  discrepancy makes  comparing the  disturbance 
amplitudes  on  this  type of plot difficult. However, 
the waterfall plot is useful for validating the  har- 
monic  numbers.  Note in Figure 5 that  the diagonal 
lines of circles lie on  top of the diagonal  spike ridges 
seen in  the  data.  This plot indicates that  the loca- 
tion of the harmonics  have  been identified correctly. 

2 4  

Figure 6 allows  validation of the  amplitude co- 
efficients. The continuous  curve in the plot is the 
amplitude  spectra of the F, data when the wheel 
was spinning at 3000 rpm.  The  discrete  impulses, 
marked  with circles, are  the  radial force model (with 
amplitudes  and frequencies  from Equation 1) at  the 
same wheel  speed.  Since the  amplitude  spectra is 
simply the  amplitude of the  disturbance  at  each fre- 
quency the two  curves can  be  compared directly. 

Figure 5: Waterfall  Plot  Comparison of Radial Force 
Model to F, Data (B Wheel) 

Figure 6: Amplitude  Spectra  Comparison of Radial 
Force  Model to F, Data (B Wheel) at 3000 rpm 

Note that  the  amplitude of the first harmonic, which 
is the  fundamental]  matches  the  amplitude of the 
data  quite well. The  comparison of the higher  har- 
monics,  on the  other  hand, is not  as  good.  This dis- 
crepancy is most likely due  to  the  assumption  that 
the  disturbance force is proportional  to  the wheel 
speed  squared. As mentioned  earlier,  this  assump- 
tion seems valid for the  fundamental  harmonic  but 
begins to  break down with  the  higher  harmonics. 
The plot does indicate] however, that  the model  pro- 
vides  a  reasonable  estimate  to  the  data. 

Analvtical Model 

It has  been  shown that  although  the  empirical model 
captures  the  tonal  quality of reaction  wheel  distur- 
bances  and provides a good  estimate for the location 
and  amplitude of the  harmonics  it is not  an  accurate 
model since it does not  include the  internal flexibility 
in  the wheel.  Figure 4 illustrates  the  fact  that  this 
internal compliance will result  in an amplification of 
the harmonic  disturbance at certain wheel  speeds. 
A complete disturbance model  should  include  this 
interaction  between the  disturbance  harmonics  and 
structural wheel modes.  Therefore]  a  non-linear,  an- 
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alytical model of a  reaction wheel which captures 
some of the  structural modes of the wheel and  the 
effects of the  fundamental  harmonic  has been devel- 
oped. 

The  internal wheel flexibility was modeled  using 
linear  springs  and  the flywheel imbalance was mod- 
eled with  lumped  masses  positioned  strategically  on 
the wheel.  Energy methods were  used to derive the 
equations of motion of the system.  These  equations 
were then  simulated using  a MATLAB ODE solver 
and  the  experimental  data was used to fit some of 
the model parameters.  The following sections will 
present  this  analytical  model.  First the  structural 
modes of the wheel will be discussed. Then,  the 
problem of a  balanced  rotating wheel on flexible sup- 
ports is solved. Finally, the  static  and  dynamic im- 
balance  masses  are  added  to  the flywheel to  complete 
the model. 

Internal Wheel Flexibility 
The RWA can  be modeled as having five degrees of 
freedom: translation in the  axial  direction,  transla- 
tion  in  the two radial  directions  and  rotation  about 
the two radial  axes.  This model  results in three 
dominant  vibrational modes:  axial translation,  ra- 
dial  translation  and rocking. These  modes are de- 
picted  schematically in Figure 7.2 

Axial Mode Radial Translation Made 

n 

Figure 7: Internal Wheel  Modes 

The  structural wheel  modes can  be seen in the 
waterfall  plots of the experimental  data.  They  ap- 
pear  as ridges in the  PSDs  (or  amplitude  spectra) oc- 
curring  at a constant frequency across wheel  speeds. 
Figure 8 shows an example of the  axial  translation 
mode  in the B wheel F, data.  The mode is located 
at E 75 Hz and is highlighted in the plot with a 
solid line. Note that  at 1600 rpm, when  a  harmonic 
crosses the  mode,  there is very large amplification in 
the  disturbance  magnitude. 

Figure 9 is a plot of the E wheel F, data  in which 
the  radial  translation  and rocking  modes are visible. 
The  radial  translation  mode occurs at zz 230 Hz and 
is also highlighted with  a solid line. The amplifica- 
tion of the  harmonics crossing this mode can  be seen 
at high wheel speeds. The rocking  mode  occurs at 
lower frequencies and behaves differently than  the 
translational  modes.  It is not  constant  across wheel 
speeds,  but is a  function of wheel speed. In  addition, 

Figure 8: Axial Translation  Mode in B Wheel  Data 

the mode is split  into two natural frequencies  form- 
ing  a  V-shaped  ridge in the  data.  The frequency of 
the positive  whirl increases with wheel  speed  while 
that of the negative  whirl decreases. The  splitting of 
this  mode is due  to gyroscopic effects caused by the 
spinning of the wheel and will be discussed in more 
detail  in  the following section.  Amplification of the 
harmonic  disturbance by both whirls of the rocking 
mode  can  be  best  seen in the plot between 1500 and 
2000 rpm. 

Wheel Speed (RPM)  Frequency (Hz) 

Figure 9: Radial  Translation  and  Rocking Modes in 
E  Wheel Data 

Balanced Wheel: Rockine:  and  Radial Modes 
The problem of a balanced flywheel on flexible sup- 
ports is considered first to  capture  the  radial modes 
(translation  and rocking) and gyroscopic  stiffening 
of the wheel.  At this  stage,  the model is axisym- 
metric so the kinetic  energy  could  be  written  in the 
body-fixed reference frame. However, when the dy- 
namic  imbalance  masses  are  added, the model be- 
comes asymmetric  and  the  kinetic  energy  must  be 
written  in  a ground-fixed reference frame.  There- 
fore, the ground-fixed reference frame will be  used 
here  as well. 

Figure  10 shows a balanced  wheel  on flexible sup- 
ports.  The  shaft flexibility is modeled  by the four 
linear  springs of stiffness !j located at a distance d 
from the  center of the wheel. The ground-fixed refer- 
ence frame is XYZ and  the shaft-fixed,  non-rotating 
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Figure 10: Model of Balanced  Flywheel  on Flexible 
Supports 

frame is xyz. The wheel  has  mass, M ,  radius, R, 
and  principal  moments of inertia I,, and Izz , where: 

1 
2 

I,, = -MR' 

1 
I=, = -MR2  

4 (8) 

The model has four generalized  coordinates, x ,  
y, 8 and q5. x and y are  the  radial  translation of the 
wheel  along the Y and Z axes,  and 8 and q5 are  the 
rotations of the wheel about  these axes, respectively. 
The wheel is also free to spin  about  the shaft-fixed z- 
axis  with  constant  angular velocity, +. Euler  angles 
and  coordinate  transformations  are used to  write  the 
angular velocity of the balanced wheel in the ground- 
fixed reference frame: 

wxyz  = (4 cos 8 cos q5 - 6 sin q5)Ux + (e cos q5 

+ 4 cos 8 sin q5)Uy + (4 - 4 sin 8)Uz (9) 

The mass  moments of inertia of the wheel in the 
ground-fixed  frame can  be  calculated  in  terms of its 
principal  moments of inertia, I,, and I==: 

I x x  = I,, (1 + cos2 q5 COS' 8) (10) 
I x y  = I,, cos q5 sin q5 cos2 8 (11) 
I x z  = -I,, cos q5 sin 8 cos 8 (12) 
I n  = I,, (1 + sin2 q5 cos2 8) (13) 
I y z  = -I,, sin q5 sin 8 cos 8 (14) 

I z z  = I z z ( l  - - cos2 8) 
1 
2 (15) 

Equations 9-15 are used to  write  the  kinetic  energy 
of the balanced wheel in the  inertial,  ground-fixed 

reference frame: 

1 
2 

!&,heel = -[(e2 + i'(1 + sin' e))&, 
+ (G2 - 2 4 4  sin8)Iz, + M(k' + y')](l6) 

The  potential  energy  is, by inspection: 

k 
4 

V = - [ ( x  + dsinq5)2 + ( x  - dsinq5)2 

+ (y + dsin8)' + (y - dsin8)'I (17) 

However,  since the wheel is centered axially on  the 
shaft,  Equation 17 reduces  to: 

IC 
2 

V = - [d'(sin' 8 + sin' 4) + x' + y'] (18) 

The  equations of motion  are derived  using  Equa- 
tions  16  and 18 and  Lagrangian  methods.  They  are 
linearized by assuming  small  motion  about x ,  y, q5 
and 8. The  translational  and  rotational degrees are 
freedom are  decoupled  in  this  case  (due  to  the as- 
sumed  symmetry  in  the  model)  and  can  be consid- 
ered  separately: 

Substituting 4 = R for the  constant wheel  speed: 

-RIzz 0 

These  equations of motion  can  be used to deter- 
mine the  natural frequencies of the balanced wheel. 
Solving for the eigenvalues in Equation  19 yields 
the following frequency for the two  transverse vi- 
brational modes: 

This frequency is the  natural frequency of the  radial 
translation  mode of the wheel. 

The frequencies of the  rotational modes are 
found by assuming that  the solutions to  Equation 20 
are of the  form, 8 = AeiWt and q5 = BeiWt. Substi- 
tuting  in  Equation 20 and solving for w gives two 
rotational  natural frequencies: 

Note that w1,2 are  dependent  on  the  spin  rate of the 
wheel, R. The gyroscopic  precession of the flywheel 
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and  the flexibility of the  shaft  creates  a rocking  mode 
which splits  into  the two  frequencies  shown in Equa- 
tion 22.  For the first mode, the whirl is opposed to 
the  rotation of the wheel and destiffens as  the wheel 
speed increases. For the second  mode, the whirl and 
the wheel rotation  are in the  same  direction  and a 
stiffening of the mode  results  with  increasing wheel 
speed.8 

Static Imbalance 
The balanced  wheel and flexible shaft model (Fig- 
ure  10)  captures the  radial  translation  and rocking 
modes of the wheel. The  static  imbalance  must now 
be  added  to model the  radial force disturbances of 
the  rotating wheel. Static  imbalance is the offset of 
the center of mass of the wheel  from the axis of  ro- 
tation.  It is most easily modeled as a small  mass, 
m,, placed at  a  radius, r,, on the wheel as shown in 
Figure 11 .2 

Figure 11: Models of Static  and  Dynamic Wheel 
Imbalances 

The  kinetic  energy of the  static  imbalance mass is 
derived by first determining the position of the mass 
on  the wheel in  the  inertial, ground-fixed reference 
frame, XYZ (see Figure  12): 

R,, = r, (sin 4 sin + + cos 4 sin e cos +)Ux 
+ (r,(sin 4 cos + sin e - cos 4 sin +) + z ) U y  
+ (r, cos 8 cos 11, + y)Uz (23) 

Then,  the  kinetic  energy  can  be  written by  differ- 
entiating  the  three  components of Equation 23 to 
obtain  the velocity of the  mass, u,,, and using 
T = AvTmv: 

A new kinetic  energy is derived by combining 
Equation 24 and  Equation  16.  The  resulting  kinetic 

energy is then used  along  with  Equation  18  and  La- 
grangian  methods  to derive the  equations of motion 
for the new system. After linearizing as  described 
above  and  substituting 4 = R and $J = Rt  it  can 
be  seen that  the  addition of the  static  imbalance  to 
the model results  in  a  driving  term in the  transla- 
tional  equations of motion  which is proportional  to 
the wheel speed, R, squared: 

Recall that  the  rotational  and  translational degrees 
of freedom are decoupled for this model.  Therefore, 
the  addition of the  static  imbalance  mass does not 
affect the  rotational degrees of freedom. 

Dynamic Imbalance 
The  dynamic  imbalance is added to  the model us- 
ing  methods  similar  to  those used to  incorporate  the 
static  imbalance. Physically, dynamic  imbalance is 
caused  by the  angular misalignment of the principal 
axis of the wheel and  the spin axis. It is modeled as 
two equal  masses,  md,  placed  180”  apart at a  radial 
distance, r d ,  and  an  axial  distance,  h from the center 
of the flywheel as shown in Figure 11.2 In  this  model, 
the  dynamic  imbalance  creates  the  radial  torque dis- 
turbances of the  rotating wheel. 

The position of the two  masses in  the  inertial, 
ground-fixed reference frame, XYZ, must first be 
determined.  These  vectors  are found through in- 
spection  and  the use of coordinate  transformations: 

R,,, = (rd(sin 4 sin + + cos 4 sin B cos +) 
+ h cos 4 cos 8)ux + (rd(sin  4cos + sin 6 
- cos 4 sin +) + h  cos 6 sin 4 + z )uy  
+ (rdcosOcos+ - hsinO+y)uz (26) 

R,,, = (-rd(sin 4 sin + + cos 4 sin 0 cos +) 
- hcos4cosQ)ux + (“rd(sinq5cos+sinO 
- cos 4 sin +) - h  cos 8 sin 4 + x ) u y  
+ (-Td cos 8 cos + + h  sin 6 + y)uz (27) 

Now, the velocity of the  dynamic  imbalance 
masses, urndl and umd2, can  be derived by simply 
differentiating  Equations 26 and 27. Then  the ki- 
netic  energy  added to  the system by the dynamic 
imbalance  masses is simply: 

Differentiating  and  substituting gives: 

Tmd = md[k2 + y 2  + ( r i  cos2 $I + h2)e2 + (h2  cos2B 
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Figure 12: Analytical RWA Model 

+ r2(1 - cos2 '$ cos2 e) + rdh cos '$ sin(2e))i2 
+ 'ri'f,h2 + 2rdb sin '$(h'f,h + ('rd COS'$ COS e 
- h sine)$) - 2rd$'f,h('rd sin 0 
+ h cos '$ cos e)] (29)  

All elements  are now incorporated in the model and 
the full equations of motion  can  be  obtained. 

Full Model 
The full model is shown in  Figure 12. Its kinetic 
energy is simply the  sum of the kinetic  energy of 
the balanced  wheel  (Equation 16),  the kinetic en- 
ergy of the  static  imbalance  mass  (Equation 24) ,  and 
the kinetic  energy of the dynamic  imbalance  masses 
(Equation 29) : 

The  Lagrangian is formed  using the  total  kinetic  en- 
ergy of the  system  and  the  potential  energy  derived 
above  (Equation 18). The equations of motion of the 
reaction  wheel  are  then  obtained by differentiating 
the  Lagrangian. 

Again, the  translational  and  rotational  degrees of 
freedom are perfectly decoupled in  this case and  can 
be  considered  separately. The  equations of motion 
for the  translational degrees of freedom, x and y, 
are: 

where: 
Mtot = M + m, + 2 m d  (32)  

The  equations of motion for the  rotational degrees 
of freedom, 8 and 4, are: 

I e f f e  = I,, + 2mdh2 4- (m,r: + 2mdr:) cos2 fit 
(34)  

(35) 
Iiz = 2mdri  + mSr: (36) 

A MATLAB ODE  solver,  such  as  ode45,  can  be  used 
along  with  these  equations to drive the wheel at 
some velocity, R ,  and  obtain  the  time  response of 
the model. 

I e f f +  = I,, i- 2mdh2 + (m,r: + 2mdr2) sin2 R t  

Conclusions and Future  Work 

A method for creating  an  empirical model of reac- 
tion wheel disturbances  from  steady-state  reaction 
wheel test  data  has been  developed. This  type of 
model captures  the  tonal  quality of reaction wheel 
disturbances  and provides  reasonable  estimates for 
the frequencies and  amplitudes of the wheel  harmon- 
ics. Data from Ithaco B and E type wheels  have 
been  used to validate the model.  However, the ex- 
perimental  data shows that  the  internal flexibility of 
the wheel  has an effect on  the  disturbances.  When 
a wheel harmonic crosses a structural  mode  there 
is a considerable  amplification  in the disturbance. 
The empirical  model  does  not  account for this effect. 
Therefore,  an  analytical model  was  developed which 
includes the  radial modes of the wheel (translation 
and rocking) and  the  fundamental  harmonic.  The 
exciting of the  structural modes  by the fundamen- 
tal harmonic is captured in this model. The model 
parameters  control  the frequencies of the  structural 
modes, the  amplitude of the  fundamental  harmonic, 
and  the amplification of the  harmonic by the  struc- 
tural modes. The values of these  parameters  are 
determined  from the  experimental  data. 

The  analytical model is a work in progress. The 
axial  mode of the wheel  must be  incorporated before 
it  can  be considered  complete. In  addition,  it is im- 
portant  to  note  that  although  the  analytical model 
captures  the effects of the  structural wheel  modes 
on  the disturbances  it  only  does so for the  funda- 
mental  harmonic.  The higher  harmonics,  which  are 
observed in the  data  and  captured  in  the  empirical 
model, are  not  represented.  This  discrepancy  sug- 
gests that  the most accurate  disturbance model is 
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a combination of the empirical and  the  analytical 
models. Such a model would use the harmonic num- 
bers  and  amplitude coefficients extracted from the 
experimental data by the  empirical modeling pro- 
cess to  add  the higher  harmonics into  the  analyti- 
cal model. As a result the interactions between the 
structural wheel modes and all the wheel harmonics 
would be  captured. 
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